HPV-driven Cancers and Somatic Mutations in These Cancers

Apr 18, 2019 | Blog

HPV Can Lead to Different Types of Cancer at Different Sites

Human papillomavirus (HPV) is mostly transmitted through sexual activities. Most of the infection (90%) is transient and the virus becomes undetectable within two years. The virus stays in the host cells in the rest of the infection, pertinent infection. Although not all pertinent infection will cause cancer, HPV-infection could lead to the following cancers:

  • Cervical cancer
  •  Oropharyngeal cancer
  • Head and neck cancer
  •  Anal cancer
  • Penile cancer
  • Vaginal cancer
  • Vulvar cancer

Not All HPV Viruses Cause Cancer

There are more than 150 subtypes of HPV by genotyping and only a small number of the subtypes are high-risk HPV that cause cancer. Among these high-risk HPV subtypes, HPV 16 is the one that causes most of cancer (50 to 90%). Therefore, it is important to understand if one carries high-risk HPV.

Mechanisms for HPV to Cause Cancer

HPV causes cancer by its interaction with the host cells. Two HPV oncoproteins play critical roles in causing cancer: E6 and E7 proteins. They bind to two tumor suppressor proteins, P53 and Rb, respectively and interfere with multiple normal cellular functions including tumor suppression and cell cycle regulations. In addition, the E6 and E7 proteins promote chromosomal instabilities and multiple cancer driver gene mutations including the most common mutations in PIK3CA (codon 542 and 545) and mutations in EGFRKRAS and many others. The details for the mechanism can be found in this review.

Understanding and detecting the genetic mutations in the HPV-driven cancer cells are important for targeted therapies and disease monitoring. Finding the potential biomarkers among these mutations and designing a diagnostic gene panel will help early cancer detection and improvement of cancer prognosis.

HPV Testing and Understanding of Cancer Risks

It is important to test high-risk HPV infection and understand the cancer risks. Our cost-effective QuantiVirus™ HPV E6/E7 mRNA test (RUO and CE/IVD) identifies pertinent infections by detecting the E6 and E7 gene expression of 14 high-risk HPV subtypes (link to a 2017 publication) and further determines if the subtype is HPV 16 or 18. The test uses either saliva or FFPE samples without isolating mRNA. The test has been successfully used for HPV genotyping for both cervical cancer and head and neck cancer patient samples.

Lead Source

NGS test for colorectal cancer to guide targeted therapy

Colorectal cancer (CRC) can develop from germline genetic mutations inherited from family or somatic mutations developed later in life. Our Optiseq™ colorectal cancer NGS for mutation detection panel covers genes associated with both hereditary and somatic mutations...

Who should be tested for VEXAS syndrome?

As a relatively newly discovered autoinflammatory disease, VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome is associated with mutations in the UBA1 gene. Diagnosis of the disease relies on the testing of genetic mutation in patients. What are...

Genetic Testing for the VEXAS Syndrome

Diagnosis of the VEXAS syndrome improves medical management of the disease and provides more effective treatment of the disease, although there is no cure currently. The diagnosis relies on the VEXAS syndrome genetic testing, a test for a mutation present in the UBA1...

What is VEXAS syndrome?

VEXAS syndrome, which stands for "Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic," is a rare and recently identified, chronically progressive autoinflammatory disorder. It was first described by Dr. Beck in a study published in the New England Journal of...

Dealing with the Respiratory Viruses that Cause Covid-19 or Flu

Influenza and COVID-19: what are they in common? Currently, the two most important respiratory viruses the healthcare authority is paying attention to are SARS-COV-2 (causing COVID-19) and influenza A and B viruses (Flu A and B). The Flu A and B viruses (named by the...